Cart (Loading....) | Create Account
Close category search window
 

Exploiting global knowledge to achieve self-tuned congestion control for k-ary n-cube networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thottethodi, M. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Lebeck, A.R. ; Mukherjee, S.S.

Network performance in tightly-coupled multiprocessors typically degrades rapidly beyond network saturation. Consequently, designers must keep a network below its saturation point by reducing the load on the network. Congestion control via source throttling-a common technique to reduce the network load-prevents new packets from entering the network in the presence of congestion. Unfortunately, prior schemes to implement source throttling either lack vital global information about the network to make the correct decision (whether to throttle or not) or depend on specific network parameters, or communication patterns. This paper presents a global-knowledge-based, self-tuned, congestion control technique that prevents saturation at high loads across different communication patterns for k-ary n-cube networks. Our design is composed of two key components. First, we use global information about a network to obtain a timely estimate of network congestion. We compare this estimate to a threshold value to determine when to throttle packet injection. The second component is a self-tuning mechanism that automatically determines appropriate threshold values based on throughput feedback. A combination of these two techniques provides high performance under heavy load, does not penalize performance under light load, and gracefully adapts to changes in communication patterns.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.