By Topic

A load balancing framework for adaptive and asynchronous applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Barker, K. ; Comput. Sci. Dept., Coll. of William & Mary, Williamsburg, VA, USA ; Chernikov, A. ; Chrisochoides, N. ; Pingali, K.

We describe the design of a flexible load balancing framework and runtime software system for supporting the development of adaptive applications on distributed-memory parallel computers. The runtime system supports a global namespace, transparent object migration, automatic message forwarding and routing, and automatic load balancing. These features can be used at the discretion of the application developer in order to simplify program development and to eliminate complex bookkeeping associated with mobile data objects. An evaluation of this system in the context of a three-dimensional tetrahedral advancing front parallel mesh generator shows that overall runtime improvements of 15 percent compared to common stop-and-repartition load balancing methods, 30 percent compared to explicit intrusive load balancing methods, and 42 percent compared to no load balancing are possible on large processor configurations. At the same time, the overheads attributable to the runtime system are a fraction of 1 percent of the total runtime. The parallel advancing front method is a coarse-grained and highly adaptive application and therefore exercises all of the features of the runtime system.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:15 ,  Issue: 2 )