Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Sharc: managing CPU and network bandwidth in shared clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Urgaonkar, B. ; Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA ; Shenoy, P.

We argue the need for effective resource management mechanisms for sharing resources in commodity clusters. To address this issue, we present the design of Sharc-a system that enables resource sharing among applications in such clusters. Sharc depends on single node resource management mechanisms such as reservations or shares, and extends the benefits of such mechanisms to clustered environments. We present techniques for managing two important resources-CPU and network interface bandwidth-on a cluster-wide basis. Our techniques allow Sharc to 1) support reservation of CPU and network interface bandwidth for distributed applications, 2) dynamically allocate resources based on past usage, and 3) provide performance isolation to applications. Our experimental evaluation has shown that Sharc can scale to 256 node clusters running 100,000 applications. These results demonstrate that Sharc can be an effective approach for sharing resources among competing applications in moderate size clusters.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )