By Topic

Providing differentiated service to TCP flows over bandwidth on demand geostationary satellite networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karaliopoulos, M. ; Centre for Commun. Syst. Res., Univ. of Surrey, UK ; Tafazolli, R. ; Evans, B.G.

The elasticity of transmission control protocol (TCP) traffic complicates attempts to provide performance guarantees to TCP flows. The existence of different types of networks and environments on the connections' paths only aggravates this problem. In this paper, simulation is the primary means for investigating the specific problem in the context of bandwidth on demand (BoD) geostationary satellite networks. Proposed transport-layer options and mechanisms for TCP performance enhancement, studied in the single connection case or without taking into account the media access control (MAC)-shared nature of the satellite link, are evaluated within a BoD-aware satellite simulation environment. Available capabilities at MAC layer, enabling the provision of differentiated service to TCP flows, are demonstrated and the conditions under which they perform efficiently are investigated. The BoD scheduling algorithm and the policy regarding spare capacity distribution are two MAC-layer mechanisms that appear to be complementary in this context; the former is effective at high levels of traffic load, whereas the latter drives the differentiation at low traffic load. When coupled with transport layer mechanisms they can form distinct bearer services over the satellite network that increase the differentiation robustness against the TCP bias against connections with long round-trip times. We also explore the use of analytical, fixed-point methods to predict the performance at transport level and link level. The applicability of the approach is mainly limited by the lack of analytical models accounting for prioritization mechanisms at the MAC layer and the nonuniform distribution of traffic load among satellite terminals.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:22 ,  Issue: 2 )