By Topic

The role of Auger recombination in InAs 1.3-μm quantum-dot lasers investigated using high hydrostatic pressure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Marko, I.P. ; Adv. Technol. Inst., Univ. of Surrey, Minsk, Belarus ; Andreev, A.D. ; Adams, A.R. ; Krebs, R.
more authors

InAs quantum-dot (QD) lasers were investigated in the temperature range 20-300 K and under hydrostatic pressure in the range of 0-12 kbar at room temperature. The results indicate that Auger recombination is very important in 1.3-μm QD lasers at room temperature and it is, therefore, the possible cause of the relatively low characteristic temperature observed, of T0=41K. In the 980-nm QD lasers where T0=110-130 K, radiative recombination dominates. The laser emission photon energy Elas increases linearly with pressure p at 10.1 and 8.3 meV/kbar for 980 nm and 1.3-μm QD lasers, respectively. For the 980-nm QD lasers the threshold current increases with pressure at a rate proportional to the square of the photon energy E2las. However, the threshold current of the 1.3-μm QD laser decreases by 26% over a 12-kbar pressure range. This demonstrates the presence of a nonradiative recombination contribution to the threshold current, which decreases with increasing pressure. The authors show that this nonradiative contribution is Auger recombination. The results are discussed in the framework of a theoretical model based on the electronic structure and radiative recombination calculations carried out using an 8×8 k·p Hamiltonian.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:9 ,  Issue: 5 )