By Topic

Design and analysis of a content-based pathology image retrieval system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Zheng ; Dept. of Pathology, Pittsburgh Univ., PA, USA ; Wetzel, A.W. ; Gilbertson, J. ; Becich, M.J.

A prototype, content-based image retrieval system has been built employing a client/server architecture to access supercomputing power from the physician's desktop. The system retrieves images and their associated annotations from a networked microscopic pathology image database based on content similarity to user supplied query images. Similarity is evaluated based on four image feature types: color histogram, image texture, Fourier coefficients, and wavelet coefficients, using the vector dot product as a distance metric. Current retrieval accuracy varies across pathological categories depending on the number of available training samples and the effectiveness of the feature set. The distance measure of the search algorithm was validated by agglomerative cluster analysis in light of the medical domain knowledge. Results show a correlation between pathological significance and the image document distance value generated by the computer algorithm. This correlation agrees with observed visual similarity. This validation method has an advantage over traditional statistical evaluation methods when sample size is small and where domain knowledge is important. A multi-dimensional scaling analysis shows a low dimensionality nature of the embedded space for the current test set.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:7 ,  Issue: 4 )