Cart (Loading....) | Create Account
Close category search window
 

An SEU hardening approach for high-speed SiGe HBT digital logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Krithivasan, R. ; Electr. & Comput. Eng. Dept., Georgia Inst. of Technol., Atlanta, GA, USA ; Niu, G. ; Cressler, J.D. ; Currie, S.M.
more authors

A new circuit-level single-event upset (SEU) hardening approach for high-speed SiGe HBT current-steering digital logic is introduced and analyzed using both device and circuit simulations. The workhorse D-type flip-flop circuit architecture is modified in order to significantly improve its SEU immunity. Partial elimination of the effect of cross-coupling at the transistor level in the storage cell of this new circuit decreases its vulnerability to SEU. The SEU response of this new circuit is quantitatively compared with three other D flip-flop architectures, including the unhardened circuit, a conventional NAND gate based circuit, and a current-sharing hardened (CSH) circuit, at both variable data rate and switching current. The new circuit shows substantial improvement in SEU response over the unhardened version, with little increase in layout complexity and power consumption. While the NAND gate based circuit still shows better SEU response than the other circuits, its high power consumption will preclude its use in space applications. Our results suggest that this new circuit architecture exhibits sufficient SEU tolerance, low layout complexity, and modest power consumption, and thus should prove suitable for many space applications requiring very high-speed digital logic.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:50 ,  Issue: 6 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.