By Topic

The impact of gamma irradiation on SiGe HBTs operating at cryogenic temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Cressler, J.D. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Krithivasan, R. ; Sutton, A.K. ; Seiler, J.E.
more authors

We show that silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) are naturally suited for space applications requiring operation of electronics at cryogenic temperatures, and present the first comprehensive investigation of the effects of gamma irradiation on the characteristics of SiGe HBTs operating at liquid nitrogen temperature (77 K). We find that exposure to 1 Mrad total dose at 77 K produces significantly less base current degradation than exposure at 300 K, and hence the total dose tolerance of SiGe HBTs, which is already excellent at room temperature without intentional hardening, improves with cooling. We compare 77 and 300 K radiation results in order to better understand the damage mechanisms.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:50 ,  Issue: 6 )