By Topic

Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuri, T. ; Basic & Adv. Res. Div., Commun. Res. Lab., Tokyo, Japan ; Kitayama, K.

Even in millimeter-wave-band (mm-wave-band) radio-on-fiber (ROF) systems, wavelength-division multiplexing (WDM) combined with subcarrier multiplexing (SCM) is a practical and attractive way to increase the channel capacity in existing optical-frequency-interleaved fibers. In this paper, we propose a channel selection scheme for interleaved dense WDM/SCM mm-wave-band ROF signals that use optical heterodyne detection with dual-mode local light. The principle underlying this scheme is explained theoretically, and channel selection of the DWDM/SCM ROF signal after transmission over a 25-km-long standard single-mode optical fiber has been experimentally demonstrated.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 12 )