By Topic

RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zuqing Zhu ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; V. J. Hernandez ; Min Yong Jeon ; Jing Cao
more authors

This paper provides theoretical and experimental studies of radio-frequency (RF) photonics processing techniques applicable in subcarrier-multiplexed optical-label switching (OLS) communications systems. The paper provides an overview of various label-coding technologies and introduces subcarrier multiplexing (SCM) as an attractive technology for OLS networks. All-optical-label extraction using optical filters, such as fiber Bragg gratings (FBGs), provides an effective means to demodulate the SCM labels without inducing RF fading effects caused by fiber dispersion. Furthermore, the role of fiber nonlinearities in the RF fading effects are theoretically and experimentally verified. The all-optical label extraction and rewriting processes constitute optical-label swapping, wherein 2R data regeneration can take place. Scalable and cascadable OLS systems are feasible by applying viable RF photonics technologies in all-optical-label processing.

Published in:

Journal of Lightwave Technology  (Volume:21 ,  Issue: 12 )