By Topic

High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. Fujii ; Dept. of Electr., Toyama Univ., Japan ; M. Tahara ; I. Sakagami ; W. Freude
more authors

We reformulate the existing auxiliary differential equation (ADE) technique in the context of the finite-difference time-domain analysis of Maxwell's equations for the modeling of optical pulse propagation in linear Lorentz and nonlinear Kerr and Raman media. Our formulation is based on the polarization terms and allows simple and consistent implementation of such media together with the anisotropic perfectly matched layer (APML) absorbing boundary condition. The disadvantages of the ADE technique, i.e., requiring additional storage for auxiliary variables, has been overcome by adopting the high-order finite-difference schemes derived from the previously reported wavelet-based formulation. With those techniques, we demonstrate in two-dimensional setting an effective and accurate numerical analysis of the spatio-temporal soliton propagation as a consequence of the physically originated balanced phenomena between the self-focusing effect of nonlinearity and the pulse broadening effects of the temporal dispersion and of the spatial diffraction.

Published in:

IEEE Journal of Quantum Electronics  (Volume:40 ,  Issue: 2 )