By Topic

Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Djie, H.S. ; Photonics Res. Centre, Nanyang Technol. Univ., Singapore ; Mei, T. ; Arokiaraj, J. ; Sookdhis, C.
more authors

Plasma-enhanced quantum-well intermixing (QWI) has been developed for tuning the bandgap of InGaAs-InP material using an inductively coupled plasma system. The application of inductively coupled plasma enhances the interdiffusion of point defects resulting in a higher degree of intermixing. Based on a semi-empirical model of QW interdiffusion, the bandgap blue-shift with respect to the plasma exposure time and inductively coupled plasma energy has been analyzed. The theoretical results appear to be in good agreement with the experimental data of the intermixed samples. The model serves as a good simulation tool to explain the intermixing mechanism and further to optimize the intermixing process for the fabrication of the photonic integrated circuits.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 2 )