By Topic

A "divide and conquer" technique for implementing wide dynamic range continuous-time filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Palaskas, Y. ; Columbia Univ., New York, NY, USA ; Tsividis, Y. ; Prodanov, V. ; Boccuzzi, V.

This paper presents a technique for implementing analog filters with wide dynamic range and low power dissipation and chip area. The desired dynamic range of the filter is divided into subranges, each covered by a different filtering path optimized specifically for this subrange. This results in small admittance levels for the individual filtering paths and correspondingly small power dissipation and chip area. The system provides undisturbed output during range switching, contrary to conventional automatic gain control (AGC)/filter arrangements that generate disturbances every time the gain of the AGC changes. We also report on a low-noise highly linear CMOS transconductor useful for high-frequency applications. A chip implementing the ideas of this paper was fabricated in a 0.25-μm digital CMOS process. The intended application of the filter is channel selection in an 802.11a/Hiperlan2 Wireless Ethernet receiver. The chip dissipates 9 mA, occupies an area of 0.7 mm2, and maintains a signal/(noise + IM3 distortion) ratio of at least 33 dB over a 48-dB signal range, with good blocker immunity. This performance represents at least an order of magnitude improvement over existing channel selection filters, even those that do not achieve disturbance-free operation.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 2 )