By Topic

A continuous, analytic drain-current model for DG MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuan Taur ; Dept. of Electr. & Comput. Eng., Univ. of California-San Diego, La Jolla, CA, USA ; Xiaoping Liang ; Wei Wang ; Huaxin Lu

This letter presents a continuous analytic current-voltage (I-V) model for double-gate (DG) MOSFETs. It is derived from closed-form solutions of Poisson's equation, and current continuity equation without the charge-sheet approximation. The entire Ids(Vg,Vds) characteristics for all regions of MOSFET operation: linear, saturation, and subthreshold, are covered under one continuous function, making it ideally suited for compact modeling. By preserving the proper physics, this model readily depicts "volume inversion" in symmetric DG MOSFETs-a distinctively noncharge-sheet phenomenon that cannot be reproduced by standard charge-sheet based I-V models. It is shown that the I-V curves generated by the analytic model are in complete agreement with two-dimensional numerical simulation results for all ranges of gate and drain voltages.

Published in:

IEEE Electron Device Letters  (Volume:25 ,  Issue: 2 )