By Topic

A temporally adaptive classifier for multispectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianqi Wang ; Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA ; M. R. Azimi-Sadjadi ; D. Reinke

This paper presents a new temporally adaptive classification system for multispectral images. A spatial-temporal adaptation mechanism is devised to account for the changes in the feature space as a result of environmental variations. Classification based upon spatial features is performed using Bayesian framework or probabilistic neural networks (PNNs) while the temporal updating takes place using a spatial-temporal predictor. A simple iterative updating mechanism is also introduced for adjusting the parameters of these systems. The proposed methodology is used to develop a pixel-based cloud classification system. Experimental results on cloud classification from satellite imagery are provided to show the usefulness of this system.

Published in:

IEEE Transactions on Neural Networks  (Volume:15 ,  Issue: 1 )