By Topic

Bayesian support vector regression using a unified loss function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Chu ; Gatsby Comput. Neurosci. Unit, Univ. Coll. London, UK ; Keerthi, S.S. ; Chong Jin Ong

In this paper, we use a unified loss function, called the soft insensitive loss function, for Bayesian support vector regression. We follow standard Gaussian processes for regression to set up the Bayesian framework, in which the unified loss function is used in the likelihood evaluation. Under this framework, the maximum a posteriori estimate of the function values corresponds to the solution of an extended support vector regression problem. The overall approach has the merits of support vector regression such as convex quadratic programming and sparsity in solution representation. It also has the advantages of Bayesian methods for model adaptation and error bars of its predictions. Experimental results on simulated and real-world data sets indicate that the approach works well even on large data sets.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 1 )