Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A fast on-chip profiler memory using a pipelined binary tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lysecky, R. ; Dept. of Comput. Sci. & Eng., Univ. of California, Riverside, CA, USA ; Cotterell, S. ; Vahid, F.

We introduce a novel memory architecture that can count the occurrences of patterns on a system's bus, a task known as profiling. Such profiling can serve a variety of purposes, like detecting a microprocessor's software hot spots or frequently used data values, which can be used to optimize various aspects of the system. The memory, which we call ProMem, is based on a pipelined binary search tree structure, yielding several beneficial features, including nonintrusiveness, accurate counts, excellent size and power efficiency, very fast access times, and the use of standard memories with only simple additional logic. The main limitation is that the set of potential patterns must be preloaded into the memory. We describe the ProMem architecture, and show excellent size and performance advantages compared with content-addressable memory (CAM) based designs.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:12 ,  Issue: 1 )