By Topic

Deterministic propagation models for radio transmission into buildings and enclosed spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wertz, P. ; Inst. fur Hochfrequenztech., Stuttgart Univ., Germany ; Wolfle, G. ; Hoppe, R. ; Landstorfer, F.M.

With the growing interest for broadband mobile services in 3rd generation mobile communication networks, the investigation of radio transmission into vehicles and buildings is getting more important. Models for the propagation into vehicles and buildings enable the calculation of the field strength or received power inside these objects. The inner structure of the vehicles (e.g. metal parts) and buildings (inner walls, furniture) as well as the surroundings (other vehicles, buildings) must be considered, and also different construction materials must be taken into account. A deterministic ray tracing approach has been developed, enabling the computation of the transition from an urban scenario to an indoor scenario and vice versa, thus allowing a very accurate computation of the field strength or received power inside vehicles or buildings. Due to the ray tracing technique, the approach can also be utilized to evaluate wideband properties of the mobile radio channel by computing its impulse response. In order to validate such propagation models, measurements inside and outside a building were made.

Published in:

Microwave Conference, 2003. 33rd European  (Volume:3 )

Date of Conference:

7-9 Oct. 2003