By Topic

New closed-form expressions for the prediction of multitone intermodulation distortion in fifth-order nonlinear RF circuits/systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boulejfen, N. ; Appl. Electr. Eng. Dept., King Fahd Univ., Hail, Saudi Arabia ; Harguem, A. ; Ghannouchi, F.M.

This paper presents a rigorous analytic approach for the prediction of the in-band and out-of-band intermodulation distortion of fifth-order memoryless nonlinear RF circuits/systems modeled using a Taylor series and driven by phase-aligned or random phase multitone excitation. Nonlinear distortion figures-of-merit such as intermodulation ratio (IMR), adjacent channel power ratio, co-channel power ratio, and noise-to-power ratio, as well as the output power density can be straightforward computed using newly developed closed-form expressions. Simulation results of output power density obtained using the developed expressions for an L-band commercial amplifier demonstrates the time efficiency and robustness of the proposed approach when compared to averaged data obtained using numerical simulators such as Agilent ADS. The comparison of the computed nonlinearity figures-of-merit with those previously published shows the importance of considering the fifth order when modeling nonlinear RF circuits/systems. The proposed analytical approach explicitly highlights the dependency of the normalized figures-of-merit relative to the standard two-tone Mm (IMR2) to the input power and to the coefficients of the Taylor model contrary to third-order-based approaches.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 1 )