We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Li ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Narayanan, K.R. ; Georghiades, C.N.

We propose a novel class of provably good codes which are a serial concatenation of a single-parity-check (SPC)-based product code, an interleaver, and a rate-1 recursive convolutional code. The proposed codes, termed product accumulate (PA) codes, are linear time encodable and linear time decodable. We show that the product code by itself does not have a positive threshold, but a PA code can provide arbitrarily low bit-error rate (BER) under both maximum-likelihood (ML) decoding and iterative decoding. Two message-passing decoding algorithms are proposed and it is shown that a particular update schedule for these message-passing algorithms is equivalent to conventional turbo decoding of the serial concatenated code, but with significantly lower complexity. Tight upper bounds on the ML performance using Divsalar's (1999) simple bound and thresholds under density evolution (DE) show that these codes are capable of performance within a few tenths of a decibel away from the Shannon limit. Simulation results confirm these claims and show that these codes provide performance similar to turbo codes but with significantly less decoding complexity and with a lower error floor. Hence, we propose PA codes as a class of prospective codes with good performance, low decoding complexity, regular structure, and flexible rate adaptivity for all rates above 1/2.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 1 )