We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
El-Shenawee, M. ; Dept. of Electr. Eng., Univ. of Arkansas, Fayetteville, AR, USA

A three-dimensional polarimetric analysis of the two-layered rough ground with and without buried objects is investigated here. A rigorous electromagnetic surface integral-equation-based model is used in this analysis. The statistical average of the polarimetric scattering matrix elements is computed based on the Monte Carlo simulations for both the vertically and horizontally polarized incident waves. The results show a significant impact on the scattered intensities due to the two-layer nature of the ground. However, these intensities show almost no difference between the ground signature with or without the object. On the other hand, the statistical average of the covariance matrix elements shows a distinct difference between these two signatures despite the small size of the buried object.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 1 )