By Topic

Obstacle avoidance for kinematically redundant manipulators using a dual neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yunong Zhang ; Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, Shatin, China ; Jun Wang

One important issue in the motion planning and control of kinematically redundant manipulators is the obstacle avoidance. In this paper, a recurrent neural network is developed and applied for kinematic control of redundant manipulators with obstacle avoidance capability. An improved problem formulation is proposed in the sense that the collision-avoidance requirement is represented by dynamically-updated inequality constraints. In addition, physical constraints such as joint physical limits are also incorporated directly into the formulation. Based on the improved problem formulation, a dual neural network is developed for the online solution to collision-free inverse kinematics problem. The neural network is simulated for motion control of the PA10 robot arm in the presence of point and window-shaped obstacle.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 1 )