By Topic

Incremental learning with balanced update on receptive fields for multi-sensor data fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianbo Su ; Dept. of Autom., Shanghai Jiaotong Univ., China ; Jun Wang ; Yugeng Xi

This paper addresses multi-sensor data fusion with incremental learning ability. A new cost function is proposed for the receptive field weighted regression (RFWR) algorithm based on the idea of back propagation (BP), so that the computation efficiency and the learning strategy of the modified RFWR are much more applicable for multi-sensor data fusion problem. Thus a new fusion structure and algorithm with incremental learning ability is constructed by adopting the modified RFWR algorithm together with the weighted average algorithm. Experiments of a two-camera unified positioning system are implemented successfully to test the proposed computation structure and algorithms.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 1 )