By Topic

An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Yen Wang ; Dept. of Electron. Eng., Fu-Jen Catholic Univ., Taipei, Taiwan ; Chih-Yuan Cheng ; Yih-Guang Leu

In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Because of the capability of genetic algorithms (GAs) in directed random search for global optimization, one is used to evolutionarily obtain the optimal weighting factors for the fuzzy-neural network. Specifically, we use a reduced-form genetic algorithm (RGA) to adjust the weightings of the fuzzy-neural network. In RGA, a sequential-search -based crossover point (SSCP) method determines a suitable crossover point before a single gene crossover actually takes place so that the speed of searching for an optimal weighting vector of the fuzzy-neural network can be improved. A new fitness function for online tuning the weighting vector of the fuzzy-neural controller is established by the Lyapunov design approach. A supervisory controller is incorporated into the GODAF controller to guarantee the stability of the closed-loop nonlinear system. Examples of nonlinear systems controlled by the GODAF controller are demonstrated to illustrate the effectiveness of the proposed method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 1 )