By Topic

Adaptive control for uncertain nonlinear systems based on multiple neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choon-Young Lee ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Ju-Jang Lee

A new adaptive multiple neural network controller (AMNNC) with a supervisory controller for a class of uncertain nonlinear dynamic systems was developed in this paper. The AMNNC is a kind of adaptive feedback linearizing controller where nonlinearity terms are approximated with multiple neural networks. The weighted sum of the multiple neural networks was used to approximate system nonlinearity for the given task. Each neural network represents the system dynamics for each task. For a job where some tasks are repeated but information on the load is not defined and unknown or varying, the proposed controller is effective because of its capability to memorize control skill for each task with each neural network. For a new task, most similar existing control skills may be used as a starting point of adaptation. With the help of a supervisory controller, the resulting closed-loop system is globally stable in the sense that all signals involved are uniformly bounded. Simulation results on a cartpole system for the changing mass of the pole were illustrated to show the effectiveness of the proposed control scheme for the comparison with the conventional adaptive neural network controller (ANNC).

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 1 )