Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Automated performance evaluation of range image segmentation algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jaesik Min ; Dept. of Comput. Sci. & Eng., Univ. of Notre Dame, IN, USA ; Powell, M. ; Bowyer, K.W.

Previous performance evaluation of range image segmentation algorithms has depended on manual tuning of algorithm parameters, and has lacked a basis for a test of the significance of differences between algorithms. We present an automated framework for evaluating the performance of range image segmentation algorithms. Automated tuning of algorithm parameters in this framework results in performance as good as that previously obtained with careful manual tuning by the algorithm developers. Use of multiple training and test sets of images provides the basis for a test of the significance of performance differences between algorithms. The framework implementation includes range images, ground truth overlays, program source code, and shell scripts. This framework should make it possible to objectively and reliably compare the performance of range image segmentation algorithms; allow informed experimental feedback for the design of improved segmentation algorithms. The framework is demonstrated using range images, but in principle it could be used to evaluate region segmentation algorithms for any type of image.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 1 )