By Topic

Convergence condition and efficient implementation of the fuzzy curve-tracing (FCT) algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hong Yan ; Dept. of Comput. Eng. & Inf. Technol., City Univ. of Hong Kong, China

The fuzzy curve-tracing (FCT) algorithm can be used to extract a smooth curve from unordered noisy data. In this paper, we analyze the convergence property of the algorithm based on the diagonal dominance requirement of the matrix used in the clustering procedure and prove that the algorithm is guaranteed to converge if the weighting coefficient for the smoothness constraint is chosen properly. Based on the convergence condition, we develop several methods for fast and reliable implementation of the algorithm. We show that the algorithm can be initialized with a user-defined curve in many cases, that a multiresolution clustering based approach and an image down-sampling scheme can be used to improve the algorithm stability and speed and that two types of traps can be removed to correct the mistakes in curve tracing. We demonstrate several advantages of our algorithm over the commonly used snake models for boundary detection and several methods for principle curve extraction.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 1 )