By Topic

Algorithmic mechanism design for load balancing in distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Grosu ; Dept. of Comput. Sci., Univ. of Texas, San Antonio, TX, USA ; A. T. Chronopoulos

Computational grids are promising next-generation computing platforms for large-scale problems in science and engineering. Grids are large-scale computing systems composed of geographically distributed resources (computers, storage etc.) owned by self interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, we investigate the problem of designing protocols for resource allocation involving selfish agents. Solving this kind of problems is the object of mechanism design theory. Using this theory, we design a truthful mechanism for solving the static load balancing problem in heterogeneous distributed systems. We prove that using the optimal allocation algorithm the output function admits a truthful payment scheme satisfying voluntary participation. We derive a protocol that implements our mechanism and present experiments to show its effectiveness.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 1 )