Cart (Loading....) | Create Account
Close category search window
 

A compiler-based approach for dynamically managing scratch-pad memories in embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kandemir, M. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Ramanujam, J. ; Irwin, M.J. ; Vijaykrishnan, N.
more authors

Optimizations aimed at improving the efficiency of on-chip memories in embedded systems are extremely important. Using a suitable combination of program transformations and memory design space exploration aimed at enhancing data locality enables significant reductions in effective memory access latencies. While numerous compiler optimizations have been proposed to improve cache performance, there are relatively few techniques that focus on software-managed on-chip memories. It is well-known that software-managed memories are important in real-time embedded environments with hard deadlines as they allow one to accurately predict the amount of time a given code segment will take. In this paper, we propose and evaluate a compiler-controlled dynamic on-chip scratch-pad memory (SPM) management framework. Our framework includes an optimization suite that uses loop and data transformations, an on-chip memory partitioning step, and a code-rewriting phase that collectively transform an input code automatically to take advantage of the on-chip SPM. Compared with previous work, the proposed scheme is dynamic, and allows the contents of the SPM to change during the course of execution, depending on the changes in the data access pattern. Experimental results from our implementation using a source-to-source translator and a generic cost model indicate significant reductions in data transfer activity between the SPM and off-chip memory.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.