By Topic

Synthesis of single/dual-rail mixed PTL/static logic for low-power applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cho, G.R. ; Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA ; Chen, T.

We present single- and dual-rail mixed pass-transistor logic (PTL) synthesis method based on genetic search and compared the results with their conventional static CMOS counterparts synthesized using a commercial logic synthesis tool in terms of area, delay, and power in an experimental 0.1- and 0.13-μm CMOS technologies as well as a 0.13-μm floating-body partially depleted silicon-on-insulator (PDSOI) process. The proposed synthesis method first performs a search for possible matches between a logic structure and a set of predefined PTL/static logic gates using binary decision diagrams (BDDs). The unique contribution of our approach is the use of a genetic algorithm to determine the best mixture of PTL and static cells based on area and power. Our experimental results demonstrate that both single- and dual-rail mixed PTL circuits synthesized using the proposed mixed PTL/CMOS synthesis method outperforms their static counterparts in delay and power in bulk CMOS as well as silicon-on-insulator (SOI) CMOS technologies. The average power of single- and dual-rail mixed PTL/Static ISCAS'85 benchmark circuits using the proposed method in the 0.1-μm bulk CMOS process are 73% and 50% better than their static counterparts with performance gains of 5% and 10%, respectively.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )