Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Real-time tracking using trust-region methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Tyng-Luh Liu ; Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan ; Hwann-Tzong Chen

Optimization methods based on iterative schemes can be divided into two classes: line-search methods and trust-region methods. While line-search techniques are commonly found in various vision applications, not much attention is paid to trust-region ones. Motivated by the fact that line-search methods can be considered as special cases of trust-region methods, we propose to establish a trust-region framework for real-time tracking. Our approach is characterized by three key contributions. First, since a trust-region tracking system is more effective, it often yields better performances than the outcomes of other trackers that rely on iterative optimization to perform tracking, e.g., a line-search-based mean-shift tracker. Second, we have formulated a representation model that uses two coupled weighting schemes derived from the covariance ellipse to integrate an object's color probability distribution and edge density information. As a result, the system can address rotation and nonuniform scaling in a continuous space, rather than working on some presumably possible discrete values of rotation angle and scale. Third, the framework is very flexible in that a variety of distance functions can be adapted easily. Experimental results and comparative studies are provided to demonstrate the efficiency of the proposed method.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 3 )