Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Markov edit distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jie Wei ; City Coll., City Univ. of New York, NY, USA

Edit distance was originally developed by Levenstein several decades ago to measure the distance between two strings. It was found that this distance can be computed by an elegant dynamic programming procedure. The edit distance has played important roles in a wide array of applications due to its representational efficacy and computational efficiency. To effect a more reasonable distance measure, the normalized edit distance was proposed. Many algorithms and studies have been dedicated along this line with impressive performances in recent years. There is, however, a fundamental problem with the original definition of edit distance that has remained elusive: its context-free nature. In determining the possible actions, i.e., insertion, deletion, and substitution, no systematic consideration was given to the local behaviors of the string/pattern in question that indeed encompass great amount of useful information regarding its content. In this paper, inspired by the success of the Markov Random Field theory, a new edit distance called Markov edit distance (MED) within the dynamic programming framework is proposed to take full advantage of the local statistical dependencies in the pattern in order to arrive at enhanced matching performance. Within this framework, two specialized distance measures are developed: The reshuffling MED to handle cases where a subpattern in the target pattern is the reshuffles of that in the source pattern, and the coherence MED which is able to incur local content based substitution, insertion, and deletion. The applications based on these two MEDs in string matching are then explored, whereof encouraging empirical results have been observed.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 3 )