By Topic

Investigating hidden Markov models' capabilities in 2D shape classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Bicego ; Dip. di Inf., Univ. di Verona, Italy ; V. Murino

In this paper, Hidden Markov Models (HMMs) are investigated for the purpose of classifying planar shapes represented by their curvature coefficients. In the training phase, special attention is devoted to the initialization and model selection issues, which make the learning phase particularly effective. The results of tests on different data sets show that the proposed system is able to accurately classify objects that were translated, rotated, occluded, or deformed by shearing, also in the presence of noise.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 2 )