By Topic

Case generation using rough sets with fuzzy representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pal, S.K. ; Machine Intelligent Unit, Indian Stat. Inst., Calcutta, India ; Mitra, P.

We propose a rough-fuzzy hybridization scheme for case generation. Fuzzy set theory is used for linguistic representation of patterns, thereby producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency rules which model informative regions in the granulated feature space. The fuzzy membership functions corresponding to the informative regions are stored as cases along with the strength values. Case retrieval is made using a similarity measure based on these membership functions. Unlike the existing case selection methods, the cases here are cluster granules and not sample points. Also, each case involves a reduced number of relevant features. These makes the algorithm suitable for mining data sets, large both in dimension and size, due to its low-time requirement in case generation as well as retrieval. Superiority of the algorithm in terms of classification accuracy and case generation and retrieval times is demonstrated on some real-life data sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 3 )