Cart (Loading....) | Create Account
Close category search window
 

Segmentation given partial grouping constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu, S.X. ; Dept. of Comput. Sci., California Univ., Berkeley, CA, USA ; Jianbo Shi

We consider data clustering problems where partial grouping is known a priori. We formulate such biased grouping problems as a constrained optimization problem, where structural properties of the data define the goodness of a grouping and partial grouping cues define the feasibility of a grouping. We enforce grouping smoothness and fairness on labeled data points so that sparse partial grouping information can be effectively propagated to the unlabeled data. Considering the normalized cuts criterion in particular, our formulation leads to a constrained eigenvalue problem. By generalizing the Rayleigh-Ritz theorem to projected matrices, we find the global optimum in the relaxed continuous domain by eigendecomposition, from which a near-global optimum to the discrete labeling problem can be obtained effectively. We apply our method to real image segmentation problems, where partial grouping priors can often be derived based on a crude spatial attentional map that binds places with common salient features or focuses on expected object locations. We demonstrate not only that it is possible to integrate both image structures and priors in a single grouping process, but also that objects can be segregated from the background without specific object knowledge.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.