Cart (Loading....) | Create Account
Close category search window
 

Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinshan Tang ; Dept. of Electr. & Comput. Eng., Virginia Univ., Charlottesville, VA, USA ; Acton, S.T.

Due to movement of the specimen, vasodilation, and intense clutter, the intravital location of a vessel boundary from video microscopy is a difficult but necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. This paper details an active contour model for vessel boundary detection and tracking. In developing the method, two innovations are introduced. First, the B-spline model is combined with the gradient vector flow (GVF) external force. Second, a multiscale gradient vector flow (MSGVF) is employed to elude clutter and to reliably localize the vessel boundaries. Using synthetic experiments and video microscopy obtained via transillumination of the mouse cremaster muscle, we demonstrate that the MSGVF approach is superior to the fixed-scale GVF approach in terms of boundary localization. In each experiment, the fixed scale approach yielded at least a 50% increase in root mean squared error over the multiscale approach. In addition to delineating the vessel boundary so that cells can be detected and tracked, we demonstrate the boundary location technique enables automatic blood flow velocity computation in vivo.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 2 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.