Cart (Loading....) | Create Account
Close category search window
 

Predicting auditory tone-in-noise detection performance: the effects of neural variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huettel, Lisa G. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Collins, L.M.

Collecting and analyzing psychophysical data is a fundamental mechanism for the study of auditory processing. However, because this approach relies on human listening experiments, it can be costly in terms of time and money spent gathering the data. The development of a theoretical, model-based procedure capable of accurately predicting psychophysical behavior could alleviate these issues by enabling researchers to rapidly evaluate hypotheses prior to conducting experiments. This approach may also provide additional insight into auditory processing by establishing a link between psychophysical behavior and physiology. Signal detection theory has previously been combined with an auditory model to generate theoretical predictions of psychophysical behavior. Commonly, the ideal processor outperforms human subjects. In order for this model-based technique to enhance the study of auditory processing, discrepancies must be eliminated or explained. In this paper, we investigate the possibility that neural variability, which results from the randomness inherent in auditory nerve fiber responses, may explain some of the previously observed discrepancies. In addition, we study the impact of combining information across nerve fibers and investigate several models of multiple-fiber signal processing. Our findings suggest that neural variability can account for much, but not all, of the discrepancy between theoretical and experimental data.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 2 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.