By Topic

Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Liserre ; Dipt. di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; A. Dell'Aquila ; F. Blaabjerg

Active rectifiers/inverters are becoming used more and more often in regenerative systems and distributed power systems. Typically, the interface between the grid and rectifier is either an inductor or an LCL-filter. The use of an LCL-filter mitigates the switching ripple injected in the grid by a three-phase active rectifier. However, stability problems can arise in the current control loop. In order to overcome them, a damping resistor can be inserted, at the price of a reduction of efficiency. The use of active damping by means of control may seem attractive but it is often limited by the use of more sensors compared to the standard control and also by a complex tuning procedure of the controllers. This paper introduces a new active damping method that does not require the use of more sensors. It consists of adding a filter on the reference voltage for the modulator. The tuning process of this filter is easily done, for a wide range of sampling frequencies, with the use of genetic algorithms. This method is used only for the optimum choice of the parameters in the filter and an on-line implementation is not needed. Thus the resulting active damping solution does not need new sensors or complex calculations. Moreover, in the paper particular attention is devoted to the susceptibility of the system in a high polluting environment.

Published in:

IEEE Transactions on Power Electronics  (Volume:19 ,  Issue: 1 )