By Topic

Improving kernel Fisher discriminant analysis for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qingshan Liu ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Hanqing Lu ; Songde Ma

This work is a continuation and extension of our previous research where kernel Fisher discriminant analysis (KFDA), a combination of the kernel trick with Fisher linear discriminant analysis (FLDA), was introduced to represent facial features for face recognition. This work makes three main contributions to further improving the performance of KFDA. First, a new kernel function, called the cosine kernel, is proposed to increase the discriminating capability of the original polynomial kernel function. Second, a geometry-based feature vector selection scheme is adopted to reduce the computational complexity of KFDA. Third, a variant of the nearest feature line classifier is employed to enhance the recognition performance further as it can produce virtual samples to make up for the shortage of training samples. Experiments have been carried out on a mixed database with 125 persons and 970 images and they demonstrate the effectiveness of the improvements.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:14 ,  Issue: 1 )