By Topic

Maximum likelihood localization of 2-D patterns in the Gauss-Laguerre transform domain: theoretic framework and preliminary results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Neri ; Appl. Electron. Dept., Univ. of Rome, Italy ; G. Jacovitti

Usual approaches to localization, i.e., joint estimation of position, orientation and scale of a bidimensional pattern employ suboptimum techniques based on invariant signatures, which allow for position estimation independent of scale and orientation. In this paper a Maximum Likelihood method for pattern localization working in the Gauss-Laguerre Transform (GLT) domain is presented. The GLT is based on an orthogonal family of Circular Harmonic Functions with specific radial profiles, which permits optimum joint estimation of position and scale/rotation parameters looking at the maxima of a "Gauss-Laguerre Likelihood Map." The Fisher information matrix for any given pattern is given and the theoretical asymptotic accuracy of the parameter estimates is calculated through the Cramer Rao Lower Bound. Application of the ML estimation method is discussed and an example is provided.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 1 )