By Topic

Context modeling based on context quantization with application in wavelet image coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jianhua Chen ; Dept. of Electron. Eng., Yunnan Univ., Kunming, China

Context modeling is widely used in image coding to improve the compression performance. However, with no special treatment, the expected compression gain will be cancelled by the model cost introduced by high order context models. Context quantization is an efficient method to deal with this problem. In this paper, we analyze the general context quantization problem in detail and show that context quantization is similar to a common vector quantization problem. If a suitable distortion measure is defined, the optimal context quantizer can be designed by a Lloyd style iterative algorithm. This context quantization strategy is applied to an embedded wavelet coding scheme in which the significance map symbols and sign symbols are directly coded by arithmetic coding with context models designed by the proposed quantization algorithm. Good coding performance is achieved.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 1 )