By Topic

Empirical mode decomposition as a filter bank

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Flandrin, P. ; Ecole Normale Superieure de Lyon, UMR CNRS, Lyon, France ; Rilling, G. ; Goncalves, P.

Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.

Published in:

Signal Processing Letters, IEEE  (Volume:11 ,  Issue: 2 )