By Topic

Architectural support for uniprocessor and multiprocessor active memory systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Daehyun Kim ; Comput. Syst. Lab., Cornell Univ., Ithaca, NY, USA ; Chaudhuri, M. ; Heinrich, M. ; Speight, E.

We introduce an architectural approach to improve memory system performance in both uniprocessor and multiprocessor systems. The architectural innovation is a flexible active memory controller backed by specialized cache coherence protocols that permit the transparent use of address remapping techniques. The resulting system shows significant performance improvement across a spectrum of machine configurations, from uniprocessors through single-node multiprocessors (SMPs) to distributed shared memory clusters (DSMs). Address remapping techniques exploit the data access patterns of applications to enhance their cache performance. However, they create coherence problems since the processor is allowed to refer to the same data via more than one address. While most active memory implementations require cache flushes, we present a new approach to solve the coherence problem. We leverage and extend the cache coherence protocol so that our techniques work transparently to efficiently support uniprocessor, SMP and DSM active memory systems. We detail the coherence protocol extensions to support our active memory techniques and present simulation results that show uniprocessor speedup from 1.3 to 7.6 on a range of applications and microbenchmarks. We also show remarkable performance improvement on small to medium-scale SMP and DSM multiprocessors, allowing some parallel applications to continue to scale long after their performance levels off on normal systems.

Published in:

Computers, IEEE Transactions on  (Volume:53 ,  Issue: 3 )