Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

CLTC: a cluster-based topology control for ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chien-Chung Shen ; Dept. of Comput. & Inf. Sci., Delaware Univ., Newark, DE, USA ; Srisathapornphat, C. ; Rui Liu ; Zhuochuan Huang
more authors

The topology of an ad hoc network has a significant impact on its performance in that a dense topology may induce high interference and low capacity, while a sparse topology is vulnerable to link failure and network partitioning. Topology control aims to maintain a topology that optimizes network performance while minimizing energy consumption. Existing topology control algorithms utilize either a purely centralized or a purely distributed approach. A centralized approach, although able to achieve strong connectivity (k-connectivity for k ≥ 2), suffers from scalability problems. In contrast, a distributed approach, although scalable, lacks strong connectivity guarantees. We propose a hybrid topology control framework, cluster-based topology control (CLTC) that achieves both scalability and strong connectivity. By varying the algorithms utilized in each of the three phases of the framework, a variety of optimization objectives and topological properties can be achieved. In this paper, we present the CLTC framework; describe topology control algorithms based on CLTC and prove that k-connectivity is achieved using those algorithms; analyze the message complexity of an implementation of CLTC, namely, CLTC-A, and present simulation studies that evaluate the effectiveness of CLTC-A for a range of networks.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )