By Topic

Investigation of interfaces with analytical tools

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dias, R. ; Assembly Technol. Dev., Intel Corp., Chandler, AZ, USA

This paper focuses on advancements in three areas of analyzing interfaces, namely, acoustic microscopy for detecting damage to closely spaced interfaces, thermal imaging to detect damage and degradation of thermal interface materials and laser spallation, a relatively new concept to understand the strength of interfaces. Acoustic microscopy has been used widely in the semiconductor assembly and package area to detect delamination, cracks and voids in the package, but the resolution in the axial direction has always been a limitation of the technique. Recent advancements in acoustic waveform analysis has now allowed for detection and resolution of closely spaced interfaces such as layers within the die. Thermal imaging using infrared (IR) thermography has long been used for detection of hot spots in the die or package. With recent advancements in very high-speed IR cameras, improved pixel resolution, and sophisticated software programming, the kinetics of heat flow can now be imaged and analyzed to reveal damage or degradation of interfaces that are critical to heat transfer. The technique has been demonstrated to be useful to understand defects and degradation of thermal interface materials used to conduct heat away from the device. Laser spallation is a method that uses a short duration laser pulse to cause fracture at the weakest interface and has the ability to measure the adhesion strength of the interface. The advantage of this technique is that it can be used for fully processed die or wafers and even on packaged devices. The technique has been used to understand interfaces in devices with copper metallization and low-k dielectrics.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:3 ,  Issue: 4 )