Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A 1.1 G MAC/s sub-word-parallel digital signal processor for wireless communication applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Yuan-Hao Huang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Hsi-Pin Ma ; Ming-Luen Liou ; Tzi-Dar Chiueh

This work proposes a communication digital signal processor (DSP) suitable for massive signal processing operations in orthogonal frequency division multiplexing (OFDM) and code-division multiple-access (CDMA) communication systems. The OFDM-based IEEE 802.11a wireless LAN transceiver and CDMA-based WCDMA uplink receiver are simulated to evaluate the computation requirements of future communication systems. The architecture of the communication digital signal processor is established according to the computational complexity of these simulations. The proposed architecture supports basic butterfly operations, single/double-precision and real- and complex-valued multiplication-and-accumulation (MAC), squared error computation, and add-compare-select (ACS) operation. This butterfly/complex MAC architecture can greatly enhance the execution efficiency of operations often found in communication applications. The processor chip is fabricated using a 0.35-μm n-well one-poly four-metal CMOS technology. The fabricated DSP chip reaches a speed of 1.1 G MAC/s when operating in the high-speed mode, and it achieves 4 M MAC/s/mW in the low-power mode.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 1 )