By Topic

An integrated one-cycle control buck converter with adaptive output and dual loops for output error correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongsheng Ma ; Dept. of Electr. & Comput. Eng., Louisiana State Unviersity, Baton Rouge, LA, USA ; Wing-Hung Ki ; Chi-Ying Tsui

An integrated adaptive-output switching converter is presented. This converter adopts one-cycle control for fast line response and dual error correction loops for tight load regulation. A dc level shifting technique is proposed to eliminate the use of negative supply and reference voltages in the controller and make the design compatible with standard digital CMOS process. The design accommodates both continuous and discontinuous conduction operations. To further enhance the efficiency, dynamic loss control on the power transistors is proposed to minimize the sum of switching and conduction losses. The design can be extended to other dc-dc and ac-dc conversions. The prototype of the buck converter was fabricated with a standard 0.5-μm digital CMOS process. Experimental results show that the converter is well regulated over an output range of 0.9-2.5 V, with a supply voltage of 3.3 V. The tracking speeds are 12.25 μs/V for a 1.6-V step-up output change and 13.75 μs/V for a 1.6-V step-down output change, respectively, which are much faster than existing counterparts. Maximum efficiency of 93.7% is achieved and high efficiency above 75% is retained over an output power ranging from 10 to 450 mW.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:39 ,  Issue: 1 )