By Topic

CMOS analog MAP decoder for (8,4) Hamming code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Winstead, C. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Canada ; Jie Dai ; Shuhuan Yu ; Myers, C.
more authors

Design and test results for a fully integrated translinear tail-biting MAP error-control decoder are presented. Decoder designs have been reported for various applications which make use of analog computation, mostly for Viterbi-style decoders. MAP decoders are more complex, and are necessary components of powerful iterative decoding systems such as turbo codes. Analog circuits may require less area and power than digital implementations in high-speed iterative applications. Our (8, 4) Hamming decoder, implemented in an AMI 0.5-μm process, is the first functioning CMOS analog MAP decoder. While designed to operate in subthreshold, the decoder also functions above threshold with a small performance penalty. The chip has been tested at bit rates up to 2 Mb/s, and simulations indicate a top speed of about 10 Mb/s in strong inversion. The decoder circuit size is 0.82 mm2, and typical power consumption is 1 mW at 1 Mb/s.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 1 )