By Topic

Nonlinear controller design for switched reluctance drive systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Guo Chen ; Dept. of Electr. Eng., National Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Tian-Hua Liu

A nonlinear speed-loop controller for a switched reluctance motor (SRM) drive system is proposed. The details of the controller design and analysis are discussed. In addition, to extend the controllable speed range, the commutating angle of the drive system is suitably adjusted as the motor speed goes beyond base-speed. By using a 32-bit microprocessor, a fully digital drive system including a digital speed-loop controller and a digital current-loop controller is implemented here. The hardware circuit of the drive system is very simple. The system has satisfactory performance in both the pulsewidth modulated (PWM) region and the single pulse region. The adjustable speed range of the system is from 10 r/min to 3000 r/min. In addition, the proposed drive system performs well in tracking ability, load disturbance rejection capability, and robustness. Several experimental results are presented to validate the theoretic analysis.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:39 ,  Issue: 4 )