By Topic

Robust histogram construction from color invariants for object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Gevers ; Dept. of Comput. Sci., Amsterdam Univ., Netherlands ; H. Stokman

An effective object recognition scheme is to represent and match images on the basis of histograms derived from photometric color invariants. A drawback, however, is that certain color invariant values become very unstable in the presence of sensor noise. To suppress the effect of noise for unstable color invariant values, in this paper, histograms are computed by variable kernel density estimators. To apply variable kernel density estimation in a principled way, models are proposed for the propagation of sensor noise through color invariant variables. As a result, the associated uncertainty is obtained for each color invariant value. The associated uncertainty is used to derive the parameterization of the variable kernel for the purpose of robust histogram construction. It is empirically verified that the proposed density estimator compares favorably to traditional histogram schemes for the purpose of object recognition.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 1 )